Toward Finding Semantic Relations not Written in a Single Sentence: An Inference Method using Auto-Discovered Rules
نویسندگان
چکیده
Recent advances in automatic knowledge acquisition methods have enabled us to construct massive knowledge bases of semantic relations. Most previous work has focused on semantic relations explicitly expressed in single sentences. Our goal in this work is to obtain valid non-single sentence relation instances, which are not written in any single sentence and may not be even written in a large corpus. We develop a method to infer new semantic relation instances by applying auto-discovered inference rules, and show that our method inferred a considerable number of valid instances that were not written in single sentences even in 600 million Web pages.
منابع مشابه
برچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملA new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کاملIdentifying Correction Rules for Auto Editing
This paper describes a framework to extract the effective correction rules from the sentence-aligned corpus and show a practical application: auto-editing using the found rules. The framework exploits the methodology of finding Levenshtein distance between sentences to identify the key parts of the rules and then use the editing corpus to filter, condense and refine the rules. We produce the ru...
متن کاملDiscovering Correction Rules for Auto Editing
This paper describes a framework that extracts effective correction rules from a sentence-aligned corpus and shows a practical application: auto-editing using the discovered rules. The framework exploits the methodology of finding the Levenshtein distance between sentences to identify the key parts of the rules and uses the editing corpus to filter, condense, and refine the rules. We have produ...
متن کاملParis: a Parallel Inference System 1
This paper presents an inferential system based on abductive interpretation of text. Inference to the best explanation is performed by the recognition of the most economic semantic paths produced by the propagation of markers on a very large linguistic knowledge base. The propagation of markers is controlled by their intrinsic propagation rules, devised from plausible semantic relation chains. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011